pixel
New carbon dioxide isotope analyzers
New carbon dioxide isotope analyzers

New carbon dioxide isotope analyzers

Stable isotopes act as tracers for studying flows and fluxes of material through ecosystems and the atmosphere. In practice, scientists measure the stable carbon isotope content of air, plants and soil to quantify many phenomena including the recycling of carbon dioxide within forests, water use efficiency, partitioning ecosystem carbon exchange into its components, gross primary productivity and ecosystem respiration, and to identify and quantify the distribution and contributions of plant species to global productivity. In addition, stable isotopes of carbon may be used to determine the effectiveness of carbon sequestration strategies. For these studies, investigators require fast, accurate measurements over a wide range of carbon dioxide concentrations.

ABB LGR-ICOS Carbon Dioxide Isotope analyzers exceed all of these requirements.



The new and improved model CCIA2-912 provides measurements of δ13C and δ18O as well as mole fractions (concentrations) of carbon dioxide and water vapor with high precision at measurement rates of up to 1 Hz.

ABB’s improved Carbon Dioxide Isotope Analyzer model CCIA2-912 incorporates a new fiber-coupled laser and provides many features that researchers need when measuring isotopic carbon dioxide, including:

  • ultra-low drift and high precision
  • ability to measure δ18O in CO2
  • ability to measure water vapor in air
  • δ13C and δ18O measurements for CO2 ranging from 300 to 25000 ppm
  • Automatic determination of δ13C, δ18O and CO2 on dry mol basis


ABB's new CCIA3-913 provides measurements of δ13C, δ17O and δ18O, as well as mole fraction (concentration) of carbon dioxide, with extraordinary precision at measurement rates of up to 5 Hz.

In addition, LGR-ICOS Carbon Dioxide Isotope Analyzer is easy-to-use and requires low power to facilitate measurements in the field. The instrument provides accurate isotopic ratio measurements over an extremely wide range of CO2 values even when those values change rapidly.


These analyzers incorporate proprietary internal thermal control for ultra-stable measurements with unsurpassed precision, accuracy, stability and drift. Moreover, only LGR-ICOS analyzers provide reliable measurements (with guaranteed specs) at concentrations more than 20 times greater than typical ambient levels (to 25000 ppm carbon dioxide in air, for model CCIA2-912). Furthermore, LGR-ICOS analyzers report measurements over the widest range of ambient temperatures allowing users to easily record data in the field.


In addition, the availability of many value-added options and accessories extends the abilities of the unit to include measurements of discrete samples (collected in bags or vials, for example), to automatically handle multiple inlet sources (e.g., from flux towers or distributed sites for uninterrupted measurements over periods of weeks), and for measurements over an extended range of mole fractions.


The analyzer uses ABB’s patented Off-axis ICOS technology, the fourth-generation cavity enhanced absorption technique, which employs a high-finesse optical cavity as the measurement cell. ABB’s technology has many proven advantages over conventional first-generation cavity ringdown spectroscopy (CRDS) techniques. In brief, since the laser beam does not have to be resonantly coupled to the measurement cell (i.e. precise beam alignment is not critical), LGR-ICOS analyzers are relatively inexpensive, simple to build, and inherently robust thermally and mechanically. In addition, since ABB’s technology can record reliable absorption spectra over a far wider range of optical depths (absorbance values) compared with CRDS, LGR-ICOS analyzers provide measurements over a much wider range of mole fractions (gas concentrations). Finally, due to the ease and simplicity of recording and quantifying the measured spectra using ABB’s Off-Axis ICOS, LGR-ICOS analyzers display the entire absorption spectra to the user in real time allowing for immediate system diagnostics and performance validation.


All LGR-ICOS analyzers have an internal computer (Linux OS) that can store data practically indefinitely on its hard disk drive and send real-time data to a data logger via the digital (RS232) and Ethernet outputs. Furthermore, the Carbon Dioxide Isotope Analyzer may be controlled remotely via the Internet. This capability allows the user to operate the Analyzer using a web browser practically anywhere. This remote access allows full control of the instrument and provides the opportunity to obtain and share data, and to diagnose instrument operation without being on site.


Get more info:

Contact the Envicontrol team

ABB-LGR CCIA-2 data sheet

ABB-LGR Advantage

ABB-LGR Technology

Go back to overview

Stay informed? Sign up!

Register yourself for our meetings and trainings. For more details please click on the event you are interested in.

Questions? Please ask!

We are happy to answer all of your question, you can even send it online via our contactpage.
Contact us
  • Exclusive contracts with various suppliers of high-tech measurement equipment.
  • We modify and integrate products in a solution.
  • Our own laboratories guarantee fast and optimal services.
Teledyne API
LNI
LGR
MET ONE INSTRUMENTS
TEKRAN
PALAS
Micro Pulse LiDAR, part of Hexagon
SYNSPEC
LSE monitors
OPSIS LiquidLine
Derenda
OPSIS
ABB Water
Mega System
2B technologies
SK Elektronik
ENVITECH
CLIMATRONICS
Gasera
Droplet
Monitoring low levels of formaldehyde in ambient air News: Monitoring low levels of formaldehyde in ambient air

Formaldehyde, chemical formula HCHO or CH2O, is a colorless gas with a pungent odor. Levels above 0.1 ppm can cause allergy and acute health problems, e.g. sore throat, skin irritation, nausea, scratchy eyes and cough. Formaldehyde (HCHO) is also classified as highly carcinogenic compound. Exposure to moderate amounts of HCHO has been linked to cancer, such as leukemia.

New carbon dioxide isotope analyzers News: New carbon dioxide isotope analyzers

Stable isotopes act as tracers for studying flows and fluxes of material through ecosystems and the atmosphere. In practice, scientists measure the stable carbon isotope content of air, plants and soil to quantify many phenomena including the recycling of carbon dioxide within forests, water use efficiency, partitioning ecosystem carbon exchange into its components, gross primary productivity and ecosystem respiration, and to identify and quantify the distribution and contributions of plant species to global productivity. In addition, stable isotopes of carbon may be used to determine the effectiveness of carbon sequestration strategies. For these studies, investigators require fast, accurate measurements over a wide range of carbon dioxide concentrations.

ABB LGR-ICOS Carbon Dioxide Isotope analyzers exceed all of these requirements.

Cloud Condensation Nuclei (CCN) counter News: Cloud Condensation Nuclei (CCN) counter

Droplet's CCN-100/200 measures the count and size of individual aerosol particles that can form into cloud droplets. Its fast response time allows use in either airborne or ground-based stations.

Photoacoustic detector for solid, semi-solid and liquid samples News: Photoacoustic detector for solid, semi-solid and liquid samples

The INRAe of Narbonne has bought an ultra-high performance photoacoustic detector for solid, semi-solid and liquid samples (a PA301 module produced by Gasera). The PA301 is used as an accessory for any FTIR device. Last week, the Envicontrol team provided on site setup and a full training has been given.

Flux measurements News: Flux measurements

Los Gatos Research (LGR) now offers more analyzer choices to measure surface-atmosphere fluxes. Traditionally, there are four main flux measurement techniques: Eddy Covariance, Relaxed Eddy Accumulation, Gradient and Chamber-based. Though carbon dioxide and water vapor are the most common greenhouse gases measured, in many ecosystems a number of different gases must be measured. LGR's technology has improved rapidly over the years and new analyzers are now available allowing scientists to expand their research by measuring other greenhouse gases such as methane, nitrous oxide, carbon monoxide, ammonia, and carbonyl sulfide.

Envicontrol Germany News: Envicontrol Germany

Envicontrol is increasing his presence in Europe with the setup of a subsidiary in Germany. Envicontrol GmbH is now fully established in Köln.

From Germany, for any commercial request, please contact Hans Helsen. For technical support, contact Tobias Könemann.

We are close to our customers and will be even closer tomorrow.

VMM choose our NOx analyzers News: VMM choose our NOx analyzers

The Vlaams Milieu Maatschappij (VMM) has chosen to work with Envicontrol for the NOx monitoring within the Flemish air quality monitoring network. The T200 analysers from TAPI will take place soon and 45 units are foreseen to be delivered before the end of 2021.

Measuring ships SO2 emissions with OPSIS News: Measuring ships SO2 emissions with OPSIS

Last week during the ship's stopover at the harbour of Antwerp, the Envicontrol team has maintained the OPSIS analyser monitoring CO2 and SO2 on the “Nabucco” vessel.

We participate in various fairs and seminars around Europe where we can keep you informed of the latest developments and possibilities in the field of measurement and analysis equipment. Below you will find an overview of the events we visited recently and the events where you can meet us soon.

Contactinformation

Envicontrol Belgium

P +32 (0) 81 713 491

Rue Phocas Lejeune 25
B-5032 Les Isnes
Belgium

Envicontrol Deutschland

P +49(0)221 7907 7054

Waidmarkt 11
DE-50676 Köln
Deutschland

Envicontrol France

P +33(0)1 39 76 04 19

Route de Sartrouville 54
F-78230 Le Pecq
France

Envicontrol Nederland

P +31(0)418 651 158

Valeton 25
5301 LW Zaltbommel
Nederland
Equipment selector

Loading...

Show Video

Watch our Video

In this video Envicontrol commits to give a answer on instrumentation, formation and maintenance.