ABB LGR-ICOS GAS Analyzers

ABB LGR-ICOS GAS Analyzers

Release of natural methane hosted in interstitial water of marine sediments from the sea floor by seep processes is regularly observed on continental margins, and the significance of marine methane seepage contribution to the total atmospheric methane budget and global warming is under debate.  



AIRBORNE MEASUREMENTS OF METHANE FLUX OVER OFFSHORE BLOWOUT BUBBLE PLUME 

Release of natural methane hosted in interstitial water of marine sediments from the sea floor by seep processes is regularly observed on continental margins, and the significance of marine methane seepage contribution to the total atmospheric methane budget and global warming is under debate.  

In November 1990, during drilling operations for installation of new offshore well 22/4b in northern North Sea, the company Mobil hit a shallow gas seep at 360 meters below seabed level. The well blew out, creating a massive bubble plume that rapidly decreased after a few days.


Gas analyser



abb lgr


After several ship and remotely operated vehicles surveys, it was concluded in year 2000 that there was no evidence of environmental and safety threat on the site and that no further monitoring was required. However, methane concentration and isotopic data collected during subsequent ship and submarine surveys in 2005-2006 still showed the presence of emissions of methane of biogenic origin. As a consequence in 2010 the UK Department of Environment and Climate Change started a study program to precisely assess status of the abandoned 22/4b site and the nature and fate of the gas discharge.

On 3rd June 2011, a group of environmental scientists from Bremen Institute of Environmental Physics (IUP), Alfred Wegener Institute for Polar and Marine Research (AWI) and the German Research Centre for Geosciences performed several flights on-board AWI’s Polar-5 BT-57 aircraft over 22/4b well site, in order to test an infrared passive remote sensing method for measurement of the methane surface flux to the atmosphere. The scientific equipment onboard the aircraft consisted of several turbulence probes, various temperature, pressure, humidity and camera sensors, data acquisition systems and dataloggers, as well as IUP’s custom passive infrared spectrometer with medium resolution called Methane Airborne MAPper (MAMAP). The payload also included an LGR Fast Methane Analyzer with an external pump in order to perform in-situ methane concentration measurements during the flights.


abb lgr 3


Remote detection of methane mole fraction in the layer between sea surface and flight altitude (“total column”) was performed with the MAMAP through absorption spectroscopy in the short-wave infrared range of the sunlight reflected and scattered by the sea surface (“sunglint”). When measuring potentially harmful gases, the advantage of this approach is that it is safer and easier -from regulatory point of view- to deploy than in-situ ship-based or low altitude airborne measurements in the plume. This work is reported in attached paper “Atmospheric remote sensing constraints on direct sea-air methane flux from the 22/4b North Sea massive blowout bubble plume”.


abb lgr icos 4


In-flight infrared measurements with the MAMAP spectrometer were performed at a constant altitude of 650m. This is above the boundary layer, which is the air layer near the sea surface affected by diurnal heat, moisture or momentum transfer to or from the surface, estimated at 150-180m above sea level. Compared with atmospheric background, the remote sunglint measurements did not allow to detect any increase in methane flux exceeding instrument measurement precision. Thanks to its sensitivity, the LGR Fast Methane Analyzer was used as a reference instrument to validate that the MAMAP measurements were reliable. The LGR analyzer in-situ measurements at the top and above the boundary layer in the measurement confirmed the absence of detectable methane concentration increase.

Subsequent model simulations based on measured atmospheric conditions and assuming a local methane source with various strengths allowed to refine the total column assessment. It was concluded that the direct 22/4b methane blowout emissions by ebullition during the overflights were below 10 kilotons per year -potentially even below 5 kilotons per year- which is in line with ship-based observations.

In the future, the equipments and approach used for this work could be used to estimate emissions from other offshore and onshore accidental large scale natural gas releases.

  • Exclusive contracts with various suppliers of high-tech measurement equipment.
  • We modify and integrate products in a solution.
  • Our own laboratories guarantee fast and optimal services.
Teledyne API
LNI
LGR
MET ONE INSTRUMENTS
TEKRAN
PALAS
Micro Pulse LiDAR, part of Hexagon
SYNSPEC
LSE monitors
OPSIS LiquidLine
Derenda
OPSIS
ABB Water
Mega System
ANCON
2B technologies
SK Elektronik
ENVITECH
CLIMATRONICS
Gasera
OPSIS Data Services (ODS) is a new service from OPSIS that provides easy management of measurement data. News: OPSIS Data Services (ODS) is a new service from OPSIS that provides easy management of measurement data.

OPSIS Data Services (ODS) is a new service from OPSIS that provides easy management of measurement data. We have made a new video to describe it.

Real-time chemical mapping of a river using OA-ICOS Technology News: Real-time chemical mapping of a river using OA-ICOS Technology

The carbon cycling and conversion to CO2 or CH4 follows specific dynamics in coastal ecosystems that combine water and sediments. In order to better understand this accelerated cycle, a group of marine scientists from Whoods Hole Oceanographic Institution (USA) have developed the gas-powered autonomous surface vehicle (ASV) “ChemYak” equipped with various in-situ sensors for water composition analysis and meteorologic measurements.

A new success for Envicontrol NV! News: A new success for Envicontrol NV! We are proud to announce our success in the tender from Wageningen University & Research News: We are proud to announce our success in the tender from Wageningen University & Research

We have been selected by Wageningen University & Research (WUR) to deliver and service five Gasera One photoacoustic for multi gas analysis and five Multipoint Samplers (MPS) to be installed in livestock barn environment for the analysis of Methane (CH4), Ammonia (NH3), Nitrous Oxide (N2O) and Carbon Dioxide (CO2), gases which can contribute to the global warming.

UNDERSTANDING LEAF TRANSPIRATION MECHANISMS WITH LGR WATER VAPOUR ISOTOPIC ANALYZER News: UNDERSTANDING LEAF TRANSPIRATION MECHANISMS WITH LGR WATER VAPOUR ISOTOPIC ANALYZER

Leaf transpiration is the process in which plant roots absorb water and then release the water in the form of vapour through the leaves. It is an important factor in the water cycle as it is one of the major sources of water into the atmosphere (10%). The leaf transpiration process is nearly identical to perspiration or sweating in animals.

ABB LGR-ICOS GAS Analyzers News: ABB LGR-ICOS GAS Analyzers

Release of natural methane hosted in interstitial water of marine sediments from the sea floor by seep processes is regularly observed on continental margins, and the significance of marine methane seepage contribution to the total atmospheric methane budget and global warming is under debate.  

AIRBORNE MEASUREMENTS OF METHANE FLUX OVER OFFSHORE BLOWOUT BUBBLE PLUME News: AIRBORNE MEASUREMENTS OF METHANE FLUX OVER OFFSHORE BLOWOUT BUBBLE PLUME

Dear Colleagues and Partners, Release of natural methane hosted in interstitial water of marine sediments from the sea floor by seep processes is regularly observed on continental margins, and the significance of marine methane seepage contribution to the total atmospheric methane budget and global warming is under debate. In November 1990, during drilling operations for installation of new offshore well 22/4b in northern North Sea, the company Mobil hit a shallow gas seep at 360 meters below seabed level.

Multi-gas monitoring with gasera one pulse News: Multi-gas monitoring with gasera one pulse

GASERA ONE PULSE is a versatile and easy to use multi-gas monitoring solution. It offers accurate ppb detection at an unbeatable price. It can be configured for a range of uses and is currently in use by our customers in; detecting SF6 leakage, refrigerant leakage, anesthetic gas monitoring, emissions monitoring of greenhouse gases, soil analysis, occupational health and safety, photocatalysis, animal husbandry, and fume hood performance testing.

Please get in contact and we can discuss your gas measurement requirements.

We participate in various fairs and seminars around Europe where we can keep you informed of the latest developments and possibilities in the field of measurement and analysis equipment. Below you will find an overview of the events we visited recently and the events where you can meet us soon.

Contactinformation

Business unit North

P +31(0)418 651 158

Valeton 25
5301 LW Zaltbommel
Netherlands

Business unit South

P +33(0)1 39 76 04 19

Route de Sartrouville 54
F-78230 Le Pecq
France

Registered office

P +32 (0) 81 713 491

Rue Phocas Lejeune 25
B-5032 Les Isnes
Belgium

Antwerpen Office

P +32(0)3 430 16 98

Kromstraat 64C/ 5A-12A
B-2520 Ranst
Belgium

Lyon Office

P +33(0)4 72 79 68 50
F +33(0)1 39 76 07 44
Cours du 3ème Millénaire 333
F-69791 Saint Priest Cedex
France
Equipment selector

Loading...

Show Video

Watch our Video

In this video Envicontrol commits to give a answer on instrumentation, formation and maintenance.